Search this site
Embedded Files
Mohammed Ombadi
  • Home
  • CV
  • Research Group
  • Media
  • Research
    • Data Science for Water Sustainability
    • Environmental Remote Sensing for Water Sustainability
    • Climatic Extremes
  • Teaching
  • Service and Outreach
  • Resources
    • Recorded Talks
    • Blog
    • Photos
    • Lab Resources
Mohammed Ombadi
  • Home
  • CV
  • Research Group
  • Media
  • Research
    • Data Science for Water Sustainability
    • Environmental Remote Sensing for Water Sustainability
    • Climatic Extremes
  • Teaching
  • Service and Outreach
  • Resources
    • Recorded Talks
    • Blog
    • Photos
    • Lab Resources
  • More
    • Home
    • CV
    • Research Group
    • Media
    • Research
      • Data Science for Water Sustainability
      • Environmental Remote Sensing for Water Sustainability
      • Climatic Extremes
    • Teaching
    • Service and Outreach
    • Resources
      • Recorded Talks
      • Blog
      • Photos
      • Lab Resources

Evaluation of methods for causal discovery in hydrometeorological systems 

Water Resources Research 2020

Publication Info:

  • Recommended citation: Ombadi, M.*, Nguyen, P., Sorooshian, S., & Hsu, K. L., Evaluation of methods for causal discovery in hydrometeorological systems. Water Resources Research, https://doi.org/10.1029/2020WR027251.

  • Link to pdf: Ombadi et al. WRR 2020

  • Journal Impact Factor (2021): 6.16

Abstract:

Understanding causal relations is of utmost importance in hydrology and climate research for systems identification, prediction, and understanding systems behavior in a changing climate. Traditionally, researchers in hydrometeorology attempted to study causal questions by conducting controlled experiments using numerical models. This approach, however, in most cases of interest provides uncertain results because the models are approximate representation of the natural system. An alternative approach that has recently drawn significant attention in several fields is to infer causal relations from purely observational data. It possesses several traits to its utility particularly in hydrometeorology due to the rapid accumulation of in situ and remotely sensed data records. The first objective of this study is to present a brief description of four causal discovery methods (Granger causality, Transfer Entropy, graph-based algorithms, and Convergent Cross Mapping) with special emphasis on the assumptions on which they are built. Second, using synthetic data generated from a hydrological model, we assess their performance in retrieving causal information taking into account sensitivity to sample size and presence of noise. Last, we use causal analysis to examine and formulate hypotheses on causal drivers of evapotranspiration in a shrubland region during summer and winter seasons. An interpretation of the hypotheses based on canopy seasonal dynamics and evapotranspiration processes is presented. It is hoped that the results presented here can be useful in guiding researchers studying hydrometeorological systems as to which causal method is most appropriate to the characteristics of the system under study.

@ Mohammed Ombadi, 2022 
Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse